Home > Theatre Talks >

Back to the Future with Embedded Software (and Predictable Timing)

Henk Muller - XMOS- Available in 26 days, 18 hours and 29 minutes

In this session, we will explore how we can still learn a thing or two from the past. The very first microprocessors employed a simple model that enabled programmers to reason about the speed of their programs - up to the clock-cycle precision. Taking advantage of this, some early computers generated video and audio streams directly from software. Over time, microprocessors and microcontrollers became faster and more complex, and they lost this property, making it harder for embedded programs to respond in a precise way. At the same time, embedded programs became more complex - and the focus shifted to executing multiple real-time tasks, simultaneously. 

Discover how we, at XMOS, have gone back to a computational model that enables the programmer to reason about time, and to write software that you proof once correct, and can re-use in different contexts. We offer a bag of 16 hardware threads that each have predictable timing. Each thread can be programmed in hard-real-time individually, and be composed with other threads without affecting each other’s timing. Offering both vector compute and IO compute, xcores can deal with 10 ns accurate IO timings from software, whilst offering up to a million FFTs per second (256 points) for DSP; all in a 7x7mm QFN. 

We will explain how the hardware enables event driven programming - where the compiler and programmer can reason about response times and throughput – which means that interrupts are mostly avoided. For computational code the compiler can verify the timing, so the programmer can guarantee that their DSP is fast enough to keep up with the IO.

italicssurround text with
boldsurround text with
**two asterisks**
or just a bare URL
surround text with
strikethroughsurround text with
~~two tilde characters~~
prefix with

No comments or questions yet. Will you be the one who will break the ice?